
J .  Fluid Mmh. (1987), V O ~ .  179, p ~ .  307-326 

Printed in Great Britain 
307 

Turbulent energy dissipation in a wake 

By L. W. B. BROWNE, R. A. ANTONIA AND D. A. SHAH 
Department of Mechanical Engineering, University of Newcastle, NSW 2308, Australia 

(Received 30 April 1986 and in revised form 5 November 1986) 

The average turbulent energy dissipation is often estimated by assuming isotropy 
and measuring the temporal derivative of the longitudinal velocity fluctuation. In  
this paper, the nine major terms that make up the total dissipation have been 
measured in the self-preserving region of a cylinder wake for a small turbulence 
Reynolds number. The results indicate that local isotropy is not satisfied; the 
isotropic dissipation, computed by assuming isotropic relations, being smaller than 
the total dissipation by about 45 % on the wake centreline and by about 80 yo near 
the wake edge. Indirect verification of the dissipation measurements is provided 
by the budget of the turbulent kinetic energy. This budget leads to a plausible 
distribution for the pressure diffusion term, obtained by difference. 

1. Introduction 
In  many of the computer approaches that are used to calculate turbulent flows, 

the average turbulent energy dissipation is estimated by assuming isotropy and 
measuring the temporal derivative of the longitudinal velocity fluctuation. The 
energy dissipation is a significant term in the governing equations used in the 
calculations and it is therefore important that accurate estimates for this term be 
available. In  this paper we present measurements of the nine major terms that make 
up the total dissipation in the self-preserving region of a cylinder wake. 

The total average turbulent energy dissipation Z is given by (e.g. Hinze 1975 
p. 218) 

using standard Cartesian tensor notation and summation on repeated indices. The 
isotropic value ZI of Z, fist obtained by Taylor (1935), can be economically derived 
from the isotropic relation? 

where &a@ is the Kronecker delta (a,, = 1 if a = p, = 0 if a + p). Using (I) ,  (2) and 
the more usual notation for velocity fluctuations and coordinate axes (u, v, w instead 
of ul, u2, us and x, y, z instead of xl, x2, x3) 

t This follows from the isotropic fourth-order tensor expression (e.g. Jeffreys 1963) using 
symmetry and continuity. 
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The total dissipation 8 contains 12 terms, 
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For isotropy, the first 9 terms are equal and using (2), terms [lo], [ l l ]  and [12] are 
negative and of half the magnitude of the other terms, viz. 

The assumption of isogropy can be directly checked by measuring the 12 terms of 
(4). As far as we know, the greatestpumber of terms that have been measured in 
the laboratory is five (terms [l], [2], [3], [4] and [7] by Laufer 1954; Wygnanski & 

~~~ ~ ~ 

Fiedler 1969 and by Verollet 1972). 
The easiest quantities to measure are (au/az)2, and (aw/as)2 since they . .  . . .  

can be derived from temporal derivatives of u, w, w using Taylor’s hypothesis 
(a/& = -T-l is the local mean velocity). Term 1 can be obtained from 
a single hot wire while the other two require one X-wire. Several published values 
of the ratios K ,  and K,, where 

where 

and (7) 

are shown in table 1 for various turbulent shear flows. For isotropy K ,  and K ,  should 
be 1.0. The majority of entries in this table indicate that K, and K ,  do not satisfy 
isotropy. Although K ,  and K ,  are approximately equal, their magnitudes are 
generally greater than 1 .O. 

The quantities (au/ay)2 and (au/az)2 are also measurable. They can be obtained 
using two parallel hot wires and techniques that are described later, provided several 
possible sources of error are taken into account (e.g. Antonia & Browne 1986, 
hereinafter referred to as I). There are fewer published measurements for ( a ~ / a y ) ~  and 
(au/az)2 compared with those for terms [I], [2] and [3]. This is evident in table 2 which 
reports values of the ratios K3 and K4, where 

and (9) 

For isotropy, K3 and K4 should be 1.0. The results in table 2 suggest that although 
K3 and K4 are nearly equal, their magnitude is consistently smaller than 1 .O. 

The quantities 
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Flow 

homogeneous 
shear flow 

layer 

Quasi- 

Boundary 

Pipe 

Circular 
jet 

Plane jet 
(without 
external 
flow) 

Plane jet 
(with 
external 
flow) 

Mixing 
layer 

Experimental details 

RA = 160 

R, x 50000 

R, = 5oOoo 

= 500000 

= 90Ooo 

Rd = 1ooooo 

R, = 990 

R, = 204 
RA = 300 

= 200 
Strong jet 

Weak jet 

RA = 330 

Two-dimensional Rd = 2700 
cylinder 
wake Rd = 19050 

R, = 8400 

y/6 z 0.08 
x 0.32 

Near wall 
Half radius 
Near wall 
Half radius 
Near wall 
Half radius 

= 0.05 
= 0.1 

= 0.05 
= 0.1 

Centreline 
Centreline 
Halfwidth 
Centreline 
Halfwidth 
Centreline 
Halfwidth 

ylx = 0 

ylx = 0 

1.30 1.30 

1.65 1.57 
1.72 1.59 

3.3 1.8 
1.0 0.83 
1.73 1.73 
1.40 1.12 
1.22 1.22 
1.27 1.27 
0.98 0.98 
1.25 1.25 
1.75 1.75 
1.47 1.47 
1.59 1.59 
1.77 1.77 
1.32 1.32 
1.33 1.33 
2.0 2.0 
1.82 1.82 
2.0 2.0 
1.18 1.54 
1.18 1.33 
1.74 - 

y/d = 0 0.99 1.23 
= 6  1.15 1.25 

y l d  = 0 1.16 1.12 
across the wake 1.0 1.0 

Reference 

Tavoularis & Corrsin 
(1981) 

Verollet (1972) 

Laufer (1954) 

Lawn (1971) 

Wygnanski & Fiedler 
(1969) 

Gutmark & Wygnanski 
(1976) 

Antonia et al. (1982) 
Everitt & Robins 

Everitt & Robins 
(1978) 

(1978) 

Champagne et al. 

Fabris (1974) 
(1976) 

Note: RA = a A / v  where A = [2/(i3~u/ax)~]~. 

TABLE 1. Ratios K ,  and K ,  

Champagne (1978) 
Townsend (1948) 

require the use of two X-wires very close together. Values of these quantities have 
not been reported in the literature. The term (av/az)(azu/ay) which requires four 
X-wires (or two 3-wire probes) would be too difficult to measure with any reasonable 
accuracy. We focus attention on the first nine terms in (4). Term [12] was not 
measured and, while an attempt was made to estimate terms [lo] and [ll], the 
accuracy of these terms was poor. This is considered further in $4. 

In  I, measurements were made of all three components of the average temperature 
dissipation in the self-preserving region of a turbulent wake for the same experimental 
conditions as used here. These measurements, supported by a satisfactory closure of 
the temperature variance budget, indicated that the dissipation is larger than the 
isotropic value by about 50 % near the wake centreline and almost 100 % near the 
region of maximum production. It was therefore important to ascertain whether a 
similar magnitude of departure from isotropy occurred for the average turbulent 
energy dissipation. The existence of such a departure is not immediately evident 
from the results in tables 1 and 2 since opposite trends Kl x K ,  > 1 (table 1) and 
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Flow 

Boundary 

Pipe 
layer 

Circular 
jet 

Plane jet 
(without 
external 
flow) 

Experimental details 

R8 = 50000 
x 0.32 

Rd = 50000 Near wall 
At half radius 

= 5OOOOO Near wall 
At half radius 

R, = 9OOOO Across pipe 

y/S x 0.08 

Rd= 100000 y / X = o  
= 0.05 
= 0.1 

RA = 204 Jet centreline 

K3 t 
0.76 
0.76 
0.40 
0.69 
0.93 
0.80 
1 .o 
1.2 
0.83 
0.32 
0.57 

K4t Reference 

0.80 Verollet (1972) 
0.78 
0.40 Laufer (1954) 
0.50 
0.93 
0.80 
- Lawn (1971) 
1.2 Wygnanski & Fiedler 
0.83 (1969) 
0.32 
- Antonia et al. (1984) 

t The cylindrical coordinate equivalent is used for pipe flows. 

TABLE 2. Ratios Ks and K4 

K3 x K4 < 1 (table 2) suggest the possibility of a compensation between different 
terms in (4) and therefore the possibility that (3) may be a reasonable approximation 
to (4). 

An important advantage of the experimental conditions we use here is the 
relatively large size of the Kolmogorov microscale L, [ = (v3//.):], ranging from about 
0.45 mmt near the centreline to about 0.9 mmt near the edge of the wake. Such a 
range imposes only a small spatial resolution constraint on the measurement of 
velocity derivatives using two X-probes. It may be claimed that a disadvantage of 
our experimental conditions is the small value of the turbulence Reynolds number, 
defined by R, = u2*h/u, where h = (2/(&/&r)z)' is the Taylor microscale. In the 
present flow RA x 40 a t  the centreline and R, x 80 near the edge. However, there 
is little evidence to suggest that departures from local isotropy decrease with 
increasing Reynolds number (e.g. tables 1 and 2) so that, as pointed out by Nelkin 
t Nakano (1984) and Antonia, Anselmet & Chambers (1986), it  is important to 
document departures from local isotropy at laboratory values of R,. In the context 
of the average dissipation of turbulent energy (or of the temperature variance) the 
independence of the anisotropy with Reynolds number may be a consequence of 
the anisotropic large-scale structures of the flow. 

In this paper, we report measurements of the nine major terms in (4) for the same 
location and experimental conditions as used in I. Experimental details are given in 
$2 and the accuracy of the data is briefly discussed in $3. The main results are 
presented and discussed in $4. The accuracy of these results is indirectly considered 
in $5 in the context of the budget, for the average turbulent kinetic energy. A brief 
comparison is given in $6 between the average dissipation of turbulent energy and 
the average dissipation of the temperature variance which was presented in I .  

2 

t These estimates are based on eI. The values of B reported later in this paper indicate that these 
estimates should be smaller by about 10 yo. 
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2. Experimental details 
Measurements were made in the working section (350 mm x 350 mm, 2.4 m long) 

of an open return type wind tunnel. A stainless steel tube of diameter d = 2.67 mm 
was mounted in the midplane of the working section, normal to the flow and 20 cm 
after the end of the contraction leading into the working section. The free-stream 
velocity U,  was 6.7 m/s so that the Reynolds number R, based on the cylinder 
diameter was 1170. The floor of the working section was slightly tilted to produce 
a zero pressure gradient and all measurements were made at x/d = 420. Full details 
of the experimental set-up are given in I. 

Three types of measurements were used: 
1. Single hot wires and single X-wires. Single hot wires allow measurements of 

(au/az)2 while, depending on their orientation, single X-wires allow measurements 
of ( a u / a ~ ) ~  and ( a w / a ~ ) ~  or (au/az)2 and ( a w / a ~ ) ~ .  These measurements were made 
over a period of time, before the current measurements, in connection with other 
studies of the cylinder wake. They are used here for measurement verification, 
i.e. the corresponding values obtained from the current experiments can be compared 
with these previously obtained values. 

2. Two single hot wires to obtain (au / i?~)~  and (au/az)2. Since measurement 
techniques using two single hot wires have been well investigated (see discussion 
below), it was expected that the measurements would provide an important 
verification of similar quantities obtained using two X-wires. 

3. Two X-wires to obtain terms [l] to [l l]  of (4). 
Measurements of type 2 were carried out with hot wires (P&lO% Rh) of length 

I, 2 0.8 mm and diameter d, = 5 pm. The wires were located at the same 2-position 
and parallel to the cylinder. For the y-derivatives the wires were located centrally 
in the duct and at the same z-position. The distance between them was varied from 
0.2 mm to 3.8 mm to allow an estimate to be made of ( a ~ / a y ) ~  using the difference 
technique (Antonia, Browne & Chambers 1984) and the correlation technique (Taylor 
1935; Verollet 1972; Antonia et al. 1984; I; Krishnamoorthy & Antonia 1987). A 
summary of these techniques is given later. For the z-derivatives the wires were 
separated in the y-direction by 0.2 mm and then the z-separation was varied from 
0.2 mm to 3.8 mm so that again the difference and the correlation techniques could 
be used to estimate (au/az)2. 

Measurements of type 3 were carried out with standard TSI X-probes, tungsten 
wires with d, = 5 pm and I,,, x 1.2 mm. The physical arrangements of the two X-wires 
are shown in figure 1. Note that some of the terms in (4) were measured a number 
of times with these arrangements. 

The hot wires were operated with in-house and DISA 55M10 constant temperature 
circuits at an overheat ratio of 0.6. The frequency response of the circuits, determined 
by the square-wave technique, extended to about 20 kHz. Output voltages from the 
anemometers were passed through buck and gain circuits and low-pass filtered 
(Krohn-Hite model 3323) at a frequency equal to 2.4kHz. This latter value 
was chosen to correspond approximately to the Kolmogorov frequency, fK, 

d f ,  = n/27&K) at the centreline. As indicated previously, the Kolmogorov micro- 
scale, L,, increases away from centreline by a factor of about two. Thus the low-pass 
filter frequency, f,, was almost twice the local Kolmogorov frequency near the edge 
of the wake. The filtered signals were subsequently sampled at a frequency equal to 
2fc into a PDP 11/34 computer using an 11 bit plus sign A/D converter. Yaw and 



312 L. W. B. Browne, R.  A .  Antonia and D.  A .  Shah 

' 3 . 6  x 
m. 
U 

velocity calibrations were carried out uskg a data logger and personal computer 
combination. 

Measurements were made a t  a number of y-positions across the flow, from y = 0 
to y = 25 mm. Normalization of y is by L, the position of y where the velocity defect 
is half its centreline value, i.e. 7 = y/L. At the measurement station, L = 12.3 mm. 

3. Some checks of measurement accuracy 
Before presenting results for the velocity derivatives, we briefly consider here some 

of the checks that were made to  ensure the reliabilit of the data. 
From all measurements, a large number of uZn, v2' and w2' values were obtained. 

Most of these are shown in figure 2 but not all the results for 2' are shown. The results 
left out do not change the picture. It is interesting to  note, in common with many 
turbulence measurements, any one set of measurements tend to  lie on a curve but the 
curves from one experiment to another are not the same. Best-fit curves to  the data, 
from measurements of types 1, 2 and 3, have been drawn as well as the bars that 
cover the scatter of data from all measurements. The r.m.s. error bars would be less 
than the scatter bars. I n  general, single X-wire results for u2' were satisfactorily close 

2 2 3 

2 
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0.12 

0.10 

0.10 

0.08 

m/s 

0.08 

0.06 

0.04 

0 0.4 0.8 1.2 1.6 2.0 
T 

FIGURE 2. Distribution across the wake of the r.m.8. of the turbulent velocity fluctuations. 0, lower 
X-wire; 0,  upper X-wire of figure 1 (a); u, lower X-wire;=, upper X-wire of figure 1 (a) (repeated); 
V, lower X-wire; v, upper X-wire of figure 1 ( b ) ;  A, x-wire at z = 0; A, X-wire at z = 1.6 mm in 
figure 1 (c); 0, X-wire at z = 0; B, X-wire at z = 1.6 rnm in figure 1 (d ) ;  x , single X-wire (previous 
experiments); -0-, single hot wire (previous experiments); 0,  single hot wire (previous 
experiments). 

2-1 
to those obtained with a single hot wire. Also, results for uZ4, vZr, w2' obtained with 
two X-wires were in good agreement with those obtained with a single X-wire. This 
indicated that little interference occurred between the X-wires. 

There are several sources of uncertainty associated with the measurement of 
derivatives, especially those involving the use of two hot wires. A full discussion of 
these is in Antonia et al. (1986). Here the following criteria were considered: 

(i) Spatial resolution: the diameter, d,, and length, l,, of the hot wires were chosen 
so that the ratio of wire length to the Kolmogorov microscale, Zw/LK was as small 
as practicable, while lw/dw was large enough to ensure that end conduction errors 
were negligible. For single hot wires, lw/dw x 150 and !?,ILK varied from 0.8 at the 
edge of the wake to 1.7 a t  the wake centreline. For the two X-wire measurements, 
the corresponding values were 250 and lw/LK x 1.3 to 2.7. The iw/dw ratios used for 
the present measurements are close to the generally accepted value of 200 (Cham- 
pagne 1978). For the present maximum values of !?,/& and wavenumber, the 
hot-wire length corrections of Wyngaard (1968) indicate that the measured one- 
dimensional spectrum is underestimated by an amount which increases, a5 the 
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AYylL, 
1 2 4 6 8 1 0  

op’ 
4Y 

0 1 2 3 4 5 

AYILK 

FIGURE 3. (a) Log-log representation of (1 -pa) as a function of AylL,. 0, 9 = 0.8. -, line of 
t slope 2. (a) Dependence of /Ay on AylL,. 0,  9 = 0.8. -, linear extrapolation of data for 

Ay/L, > 2.0. Arrow (--+) indicates value obtained from correlation technique. 

wavenumber increases, to a maximum of about 14%. This correction is com- 
parable to the experimental scatter and therefore wire length corrections were not 
applied. 

(ii) Cut-off frequencyf, of the low-pass filter: the correct selection of this frequency 
is important for fine-scale turbulence studies (Champagne 1978; Antonia et al. 1986). 
For the present measurements, the skewness S and flatness factor P of au/ax were 
approximately constant for f, 2 fK, where fK is the Kolmogorov frequency, indicating 
that the selection off, >fK was satisfactory. 

(iii) Frequency response of the instruments and the record duration for each 
measurement: both of these were sufficient to ensure, as required (Antonia et al. 
1986), closure of the tails of the probability density functions of all temporal and 
spatial derivatives and good convergence for the moments of interest. 

As noted in $2,  type 2 measurements were made to provide a basis for comparison 
with the more difficult type 3 measurements. The gradients (au/ay)& and (au/az)z were 
obtained from : (a) a two-point correlation technique, and (b) the difference between 
velocity fluctuations at two points. A description of these two methods was given in 
I and is presented in summary form here. 

Let pl( t )  and Ba(t) be the data for turbulence quantity p recorded simultaneously 
at two points in space, 1 and 2. Then the autocorrelation of the two signals is defined 
by 

If the points are separated by a small distance p in any arbitrary direction r ,  then 
pp can be approximated (Batchelor 1953 p. 47), to order p 4 ,  by 

pB x 1 -pz(aSlar)2/2p, 
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where 7 can be calculated using +(fl +g). From (1 1) 

and pp can be obtained from (10). 
This approach for estimating the derivative is known as the correlation technique. 

If (12) is plotted on (1 - p  ) m. p-axis, using log-log scales, a line of slope 2 is obtained. 
Such a line can there P ore be used, figure 3(a), to determine which range of 
experimental points best satisfies (12). (In figure 3 (a), u =- p, y = r and Ay = p ) .  Any 
point on the line can then be used in (12) to estimate the derivative. 

In  the difference technique for estimating the derivatives, use is made of 

This, theoretically, becomes more accurate as p+O. In figure 3 (b), where A y  = p and 
Au = p2-p1, the experimental points, obtained using (13), show that an extrapola- 
tion procedure has to be used to estimate the derivative as Ay+O. The reason for 
this is the large relative errors in /3,-/3, and in p that apply to the measurements 
for very small separations. 

A t  7 = 0.8, the correlation technique (figure 3a)  yields a value for (au/ay)2z  of 
31 s-l while the difference technique (figure 3b) yields 32 s-l when data in the range 
2 < A y / L ,  < 4 are extrapolated to zero separation. The difference technique is easier 
to apply and it was used with the two X-wires: at 7 = 0.8, (au/ay)2* -x 32 s-l with 
A y / L ,  x 3.4. This value is only slightly larger than the value of (i3u/i3y)2' inferred 
from figure 3(b )  for a corresponding separation. In view of the uncertainty in the 
linear extrapolation in figure 3 ( b ) ,  we have chosen not to correct our two X-wires 
results for the finite separation (1.6 mm) between sensors. The level of agreement for 
(au/ay)2' (within 9 yo) and (au/az)2a (within 15 yo) using either two single wires or two 
X-wires indicated that reliable estimates can be obtained using two X-wires. 

t 

1 

1 

1 

4. Results for mean-square derivatives 
The experimental values obtained for the r.m.s. of the derivatives, (aut/az,)22 [with 

no summation on i andj], are shown in figure 4. Terms are represented by their best-fit 
curve and error bars. The experimental scatter is generally within f5% near 
the centreline, increasing to & 10% near the edge of the wake. It should be noted 
that the values obtained were approximately the same for the three types of 
measurements. 

Using the data shown in figure 4, terms [l] to [9] of (4) were determined and the 
results are plotted in figure 5.  The plot shows that the terms are not equal. The 
magnitude of the departure from local isotropy can be quite large, the ratio of 
the largest to smallest terms in figure 5 being in the range 3 to 1. The smallest terms 
in (4) are associated with streamwise derivatives. The largest contributions to (4) is 
due to the spanwise derivative of the spanwise velocity fluctuation, although (i3v/ay)2 
is only marginally smaller than (aw/az)2.  

The ratios K,,  K,, K3 and K,, ((6) to (9)), are plotted in figure 6(a) .  While K ,  and K ,  
are larger than unity, K3 and K, are smaller than unity. This trend is in agreement 
with the majority of the data in tables 1 and 2. The relative behaviour of the four 
ratios in figure 6 ( a ) ,  when taken in isolation from the other terms in (4), tends to 

1 

11 FLM 179 
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S-1 

0 0.4 0.8 1.2 1.6 2.0 

t 

I I I I 

20 - 

15 - 

0 0.4 0.8 1.2 1.6 2.0 
71 

S-1 

0 0.4 0.8 1.2 1.6 2.0 
71 
t FIGURE 4. Distribution across the wake of (i3/3/i3y)e , the r.m.s. of derivatives of velocity fluctuations. 

Best fit lines: ---, /3 = u ;  -, v ;  ---, w. (a) y = 5: 0,  /3 = u (figure l a ) ;  A, /3 = u (figure la ,  
repeated); V, /3 = u (figure lb); ., b = u (figure lc);  0, /3 = w (figure l a ,  lower X-wire); A, /3 = v 
(figure la, upper X-wire); 0, /3 = v (figure I d ,  X-wire a t  z = 0 ) ;  V, /3 = w (figure I d ,  X-wire at 
z = 1.8 mm) ; 0, /3 = w (figure 1 b, lower X-wire) ; -n-, /3.= w (figure 1 b, upper X-wire) ; 0, B = w 
(figure lc,  X-wire at  z = 0 ) ;  -0-, /? = w (figure lc ,  X-wire at z = 1.0 mm). x , /3 = u, using two 
single wires. (b) y = y: 0,  /3 = u (figure l a ) ;  A, /3 = u (figure la ,  repeated); V, /3 = u (figure 1 %  
repeated); ., /3 = u (figure l a ) ;  0,  /3 = w (figure l a ) ;  A, /3= ZI (figure l a ,  repeated); 0,  /3 = w 
(figure 1 b )  ; *, /3 = u, using two single wires. (c) y = z : 0,  /3 = u (figure 1 c) ; A, /3 = u (figure I d )  ; 
0, /3 = v (figure 1 d);  0,  /3 = w (figure 1 c);  *, /3 = u, using two single wires. 
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0 

FIGURE 5. Distributions across the wake of terms [l]  to [9] of (4). 

suggest that some compensation could occur between terms in (4) so that (3) is a 
reasonable overall approximation to (4). Such a suggestion does not gain support from 
the ratios K, to K,,, constructed and defined as follows: 

With the exception of K6 and K12, which fall slightly below I ,  the remaining ratios 
are all greater than unity (figures 6b ,  c). In particular K, and K,, show the largest 
departures from isotropy. It is clear therefore that little compensation, in the sense 
of validating (3), occurs. 

The results obtained for terms [lo] and [ l l ]  of (4) were poor - the scatter being 
large and the resulting values tending to fluctuate in sign for separate realizations 
of the same experiment. Because of the volume occupied by the two probes, phase 
differences between such quantities as au/ay and av/ax are likely to degrade the 
correlation (aulay) (avlax). This phase problem does not arise in the case of terms [ l ]  
to [9] of (4). Because of the uncertainty in estimating terms [lo] and [ll], we have 
assumed the isotropic relation, (5), for these terms as well as for term [12]. In view 
of the 'expected' smaller values of these three terms compared with the first nine 
terms in (4), this assumption is unlikely to be critical in our estimate of E .  The results 
are shown in figure 7 where it can be seen that the assumption of isotropy, (3), 
underestimates our approximation for the total dissipation by about 45% on the 
centreline to about 80 % in the outer regions of the wake. 

Laufer (1954) assumed that local isotropy may be approximately satisfied by 
derivatives with respect to a given direction, i.e. 2 ( a u / a ~ ) ~  = (av/az)2 = (aw/ax),, and 

11-2 
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FIQURE 6. Distributions across the wake of ratios K ,  to Klz ,  (a) Kl to K , ;  ( b )  K6 to K , ;  
(c) K8 to Klz. - , Isotropy value. 
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FIGURE 7. Distribution across the wake of different estimates of average dissipations of turbulent 
energy. -, B/v: from experimental results for terms [l] to [ Q ]  of (4) and estimates of terms [lo] 
to [12] using (5); ---, Z J V :  15(i3u/a~)~; ----- , - e/v: using (14); -.-.- , &/v: using (15). 

similar relations for the other two directions. A reasonable approximation to E, 
assuming also that (5)  is valid, would then be 

- E x 3v[(g+(T+(g]. 
This expression represents a semi-isotropic approximation, the basis of which is not 
rigorously supported by figure 5. We can however take advantage of the compen- 
sating effect noticeable in figure 5 :  whereas (au/ay)2 or (i3u/az)2 are not the largest 
terms representing gradients in the y- or z-directions, 2(&.4/a~)~ is the largest of the 
first three terms in (4). The agreement between approximation (14) and the 
distribution for E: obtained with (4) and (5) is satisfactory. The estimation of Z using 
(14) is not difficult since only a pair of hot wires is needed to take the required 
measurements. However, the validity of (14) should be established for other shear 
flows before it can be claimed as a useful empirical result. 

In the context of Laufer’s (1954) assumption, Wygnanski & Fiedler (1969) 
suggested a ‘semi-isotropic’ approximation for E based on their measurements in a 
self-preserving circular jet of five terms in (4). Their ‘semi-isotropic ’ expression for 
dissipation can be written as 

(15) 

where k is obtained from the relation 

Expression (15) reduces to expression (3) when k assumes the isotropic value of 2. 
Wygnanski & Fiedler found that EsI was larger than EI except near the jet 
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centreline. The present estimates of k obtained using (16) depend, albeit to a small 
extent, on whether or (aw/ax)2 is used and also the location in the wake 
(figure 4a). The present estimates of k(y), typically in the range 1.4-1.8, were 
obtained using k(7) = [(i3v/ax)2+ ( a ~ / a x ) ~ ] / 2 ( a u / a x ) ~ .  Estimates of EsI were then 
determined using k(y) and relation (15). The ratio of Z, as obtained with (4) and (5), 
and EsI varies from 1.15 at the wake centreline to about 0.9 at the edge of the wake 
(figure 7) .  The reasonable agreement between 5 and EsI is encouraging but it should 
be noted that the determination of ZsI requires the use of one X-wire to determine 
k and also the use of parallel wires to determine (au/i3y)2. Also, as noted for (la),  (15) 
cannot be rigorously validated since the isotropic approximations used to derive (15) 
are not supported by figure 5. On the basis of the present evidence, (14), which only 
requires the use of parallel wires for its implementation, seems to provide a better 
approximation to the E measurements. 

5. Average turbulent kinetic energy budget 

energy (q2 = u2 +v2 + w2) is given by (e.g. Townsend 1949) 
An approximation to the transport equation for the average turbulent kinetic - _ - -  

advection production diffusion dissipation 

Estimates were made for all the terms in (17) except for the pressure diffusion term 
which was determined by difference. The gradient a?/ax was inferred from the 
streamwise variations, given in I, of U,, the centreline defect velocity, and L and the 
self-preserving form h(7) where = q h(y) ,  using 

A cubic spline least-squares fit was first applied to the data for ?/q. Numerical 
differentiation of this fit then yielded dhldy. The lateral derivatives of T and 42" were 
obtained in similar fashion. The Reynolds shear stress distribution was in reasonable 
agreement with a calculation, set out and discussed in Browne & Antonia (1986), 
based on integrating the momentum equation. 

Since UIZZ), one of the three components of 8, was not measured, some comments 
regarding the formation of 6 are required. Since Fabris (1974, 1983) measured all 
three components of fi  (with a three-wire probe) a t  approximately the same flow 
location and experimental conditions as the present experiment, we first compared 
our distributions of &/V;: and a/ V;: with those of Fabris. The comparison was good 
in the case of a/ V;: (figure 8) although the present maximum values of I&/ V;:l (figure 
8) were larger than that of Fabris by nearly 66 yo. In view of the similarity in the 
shapes of the f i  and UIZZ) distributions (as obtained by Fabris 1974 or Townsend 
1949), we inferred our distribution for & from our & data via the relation 

(&)present = (&)present (e) . 
u2v Fabris 

The resulting values of &/V;: are shown in figure 8 with those of Fabris. In general, 
the magnitude of w22) is sufficiently smaller than & or 3 to suggest that the 
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determination of & is not critical in the context of obtaining 6. Fabris (1983) 
underlined that the lateral transport of 2 and is three times as intense as that 
for w2 fluctuations. 

The various terms in (17), normalized by multiplying with L/G, are plotted in 
figure 9. At the centreline of the wake, the gain of energy due to almost equal 
contributions from the advection and diffusion terms counteracts the loss due to 
dissipation. As the distance from the axis increases, production and dissipation tend 
to balance each other but the 7 diffusion and advection terms are also approximately 
equal and of opposite sign. It is interesting that the pressure diffusion term, obtained 
by difference, is small compared with the diffusion of 7. Also, the two diffusion 
distributions are generally of opposite sign. Assuming symmetry with respect to 
7 = 0, these distributions satisfy the integral constraints 

and 
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FIQURE 9. Measured budget of average turbulent energy. 0, production; 0, advection; V, q2 
diffusion; A, dissipation, E, equations (4) and (5); 0, pressure diffusion (by difference). A, isotropic 
dissipation, equation (3) ; and +, corresponding pressure diffusion. Values normalized by L /  q. 

by about 2 % and 8 yo respectively. If the isotropic dissipation 8, was used instead 
of E, the resulting pressure diffusion would retain the same sign throughout the wake, 
see figure 9, thereby violating the above integral constraint. This demonstrates that, 
at least in the present case, the a/ay (pv) distribution will be inaccurate if isotropy 
is assumed. 

The present pressure diffusion distribution contrasts strongly with that obtained 
by Townsend (1949) in the far field of a cylinder wake at  R, = 8400. Townsend 
assumed isotropy to determine the dissipation, after verifying that K ,  x K ,  x 1 
(Townsend 1948). The resulting pressure diffusion, obtained by difference, was 
generally unrealistically high, of the same order as production and dissipation near 
the region of maximum production. Although Townsend’s 7 diffusion satisfied the 
integral constraint approximately, his pressure diffusion did not. The reason for this 
is probably that, despite the relatively high Reynolds number, the estimation of Z 
was inaccurate due to the assumption of local isotropy. 

It should also be noted that a direct estimate of the pressure diffusion was made 
by Kobashi (1957) for a cylinder wake. Reservations have been expressed with regard 
to these measurements (e.g. Hinze 1975 p. 514) and it is evident that they may not 
be directly relevant to the present study since they were made at a distance of only 
40 diameters from the cylinder (the distributions of energy diffusion and advection 
differ significantly from those in the self-preserving region). Nevertheless, the two 
diffusion distributions obtained by Kobashi satisfy approximately the integral 
constraints, and the magnitude of the pressure diffusion was generally smaller than 
that of the energy diffusion. 



Turbulent energy dissipation in a wake 323 

_. . 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

7/ 

FIGURE 10. Distributions acroas the wake of ratios of the total and isotropic dissipations of 
-_-_ , the average turbulent energy and ---- temperature variance. 

6. Comparison between average dissipations of turbulent energy and 
temperature variance 

In  I, measurements were presented, for the same flow and conditions as investigated 
here, of the average temperature dissipation, m, at this same station. Denoting by 
0 the temperature fluctuation and by a the thermal diffusivity, then 

Assuming isotropy, the average temperature dissipation is given by 

_ _  
The ratio N / N I ,  as obtained in I, has been included in figure 10 for comparison with 
the present distribution of Z/ZI. There is an interesting similarity between these two 
ratios. In particular, there is relatively little variation between the centreline and 
r] = 1, although the gentle peak -- of Z/EI  at r] x 0.6 corresponds approximately with 
a gentle dip _ _  in m/ITI. Both N / N I  and Z/ZI increase near the wake edge although the 
increase in N / N ,  is steeper and occurs a t  a smaller r] than that for E/ZI. Notwith- 
standing the general difficulty (e.g. Antonia et al. 1986) of comparing fine-scale 
velocity and temperature fields, an interesting similarity seems to exist between the 
relative magnitude of the components of R and those of E .  An uncertainty analysis 
for Z/Z1, using as uncertainties in individual values the r.m.s. of the scatter of the 
data shown in figure 4, gave an error range of about & 6 % for 7 = 0 to 1.2. A similar 
result holds for the N / N I  curve so that the two curves are in fact very similar, at 
least up to r] = 1.2. 

It has now been established (see e.g. I;  Verollet 1972), for many different flows that 
(at9/az)2 and (ae/ay)2 are almost equal in magnitude but significantly larger than 
(Clt9/az)2. A similar inequality applies between mean-squared values of velocity 

_ _  
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derivatives in either the z- or y-direction and those in the x-direction. Spectra of ae/ay 
or M / a z  have appreciably larger low- frequency contents compared with the spectrum 
of M/ax (e.g. Sreenivasan, Antonia & Danh 1977). A similar relative behaviour has 
been obtained between spectra of aupy or au/& and the spectrum of a u p x  (Antonia 
et al. 1984). We have established during this investigation that this relative behaviour 
extends to fluctuations v and w. Quantities such as and (tlp/az)2, where 

u, v, w, are more likely to be affected by the anisotropy of the large-scale motion 
than (Q3/ax)2. This suggests that the inequality between the x-, y- and z-derivatives, 
as they appear in (4), is consistent with the results obtained from temperature 
measurements. 

7. Concluding discussion 
The present measurements, in a low-Reynolds-number cylinder wake, have 

confirmed previously published departures from isotropy of the ratios 
(av/as)2/(aulaz)2, (aw/a#/(au/az)2, (au/ay)2/(au/az)2 and (au/az)z/(au/az)2 or their 
inverse, in different turbulent shear flows and Reynolds numbers. The corresponding 
ratios for the terms (av/ay)2, (aw/i3y)2, 02, (aw/az)2, which have not been 
previously measured in the literature, also exhibit significant departures from 
isotropy. The departure from isotropy of the major terms in (4) is such that the 
isotropic dissipation, given by (3), is inadequate. Overall the use of 15~(3u/az)~, at 
least in the present flow, underestimates the measured dissipation by almost 45 yo at 
the centreline, where the flow is fully turbulent, and by 80% near the edge of the 
wake, where the effect of intermittency becomes important. 

Some support for the accuracy of the measurements of E is provided by the budget 
of the average turbulent energy. The closure for this budget is reasonable in that the 
terms representing transport of the turbulent energy by velocity and pressure 
fluctuations integrate approximately to zero across the wake. The magnitude of the 
pressure transport term is small compared with other terms in the budget. 

The Reynolds number of the present experiment is too small (e.g. no inertial 
subrange can be found in the spectra of u, v or w) to expect local isotropy to apply. 
In this sense, it may be argued that the measured anisotropy of the average turbulent 
energy dissipation is not surprising. The information in tables 1 and 2 shows however 
that the departure from isotropy of the ratios K,-K,, which are formed using five 
components of E ,  does not seem to depend on the Reynolds number. It is therefore 
unlikely that the anisotropy of E is restricted only to the present flow and Reynolds 
number. 

At this stage we can only speculate on the applicability of the present results to 
other shear flows and Reynolds numbers. Antonia et al. (1986) noted that one factor 
which has made it difficult to interpret fine-scale measurements in the context of 
isotropy, is the possible contamination of these measurements by the anisotropic 
large-scale motion. There is now sufficient evidence of the existence of a relatively 
organized large-scale motion in a wide range of non-homogeneous turbulent shear 
flows. The presence of large-scale vortical bulges in the present flow has been well 
documented and the topology of the motion associated with these bulges has been 
described by Browne, Antonia & Bisset (1986) and Antonia et al. (1987). In the latter 
paper, it  was suggested that each bulge comprised vortex loops or hairpin vortices 
whose planes lie at approximately 45" to the flow direction, in approximate alignment 
with the direction of the principal rate of strain. There is evidence (e.g. Antonia et al. 
1986) to suggest that the dissipation of turbulent energy (or temperature variance) 
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will be concentrated along this direction, thus providing an intimate link between 
the anisotropy of the large-scale motion and the anisotropy of the dissipation. 
Although the degree of organization may vary from flow to flow and with the 
Reynolds number, the presence of the (anisotropic) large-scale motion is not in 
question, thus providing a plausible extension for the validity of the present results 
to other non-homogeneous shear flows and Reynolds numbers. Using a database 
generated by direct numerical solution of the Navier-Stokes equations for homo- 
geneous turbulence in the presence of uniform shear, Moin, Rogers & Moser (1985) 
noted the existence of hairpin vortices, a result also obtained (Moin & Kim 1985) when 
the same technique was applied to a turbulent channel flow. These authors asserted 
that hairpin vortices are the dominant structures in all shear flows. The anisotropy of 
the energy and temperature dissipations observed in the measurements of Tavoularis 
& Corrsin (1981) in a homogeneous turbulent shear flow lends support to the sugges- 
tion that the validity of the present results may be extended to all shear flows. It will 
be useful, in future work, to determine quantitative measures for the anisotropy of 
the organized motion in different shear flows and Reynolds numbers. 

With due allowance for the previous speculative remarks the present results have 
important implications: since the majority of turbulent energy budgets in the 
literature have been based on isotropy, they are likely to be in error and conclusions 
about the pressure diffusion term can only be viewed with reservation. Similarly, any 
computer models that use estimates of the turbulent energy dissipation based on 
isotropy, are likely to be in error. 
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